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é‘ Outline

* Opening remarks

* The role of thermodynamics
« (General design principles

* Properties of materials

* Producing “cold”

* Cryo-cooling in space

* Instrumentation

« Heat switches

e Superconductivity

« Cooling Below 1 K
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)5- What is “Cryogenic”

* For the purposes of this talk, T < 100 K is cryogenic
— Alr liquefies
— Certain metals and ceramics become superconducting

— Out of the realm of our normal experience (arctic conditions are
not cryogenic)

— Heat capacities decrease from the Dulong & Petit (3/2 R) value
— In general the physics becomes different from room temperature

TFAWS 2015 — August 3-7, 2015 3



Jé‘ The Logarithmic Temperature Scale
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Note use of absolute scale

Each decade corresponds to different
physics and different solutions to design
problems
— 100-1000 K is the range we are used to
— 10-100 K, air liquefies and solidifies, High
temperature superconductivity
— 1-10 K, low temperature superconductivity,
liquid helium
Note that properties are not “constant”
any more, so concepts like “average”
temperature must take this into account

When analyzing a system, heat flow
margin will take the place of temperature
margin
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Thermomdynamics is a Serious Subject!

Robert Boyle
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James P. Joule
1818-1889

Benjamin Thompson Count  Nicolas Léonard J. Willard Gilibs Heike Kamerlingh Onnes Max Planck
Rumford  1753-1814 Sadi Carnot  1796-1832 1839-1903 1853-1926 1858-1947

Rudolf Clousius Gustav Robert Walther Nerast Constantin Carathéodory Albert Einstein
18221888 Kirchhoff 1824-1887 1864-1941 1873-1950 1879-1955

William Thomson Clerk Maxwell Peter Debye F.E. Simon
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Jé‘ The Laws of Thermodynamics

« First Law of Thermodynamics (Conservation of Energy)
— Energy in = Work out
— you can’t get something for nothing

« Second Law of Thermodynamics (Entropy)
— oJEntropy = (6dEnergy/Temperature)
— you can’t break even

* Third Law of Thermodynamics (Absolute Zero)
— Entropy -> 0 as Absolute Temperature -> 0
— there’s no use trying
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!é‘ Thermodynamics

 Thermodynamics is key to understanding cryogenic
processes

* Refrigeration
— 1stand 2" Jaws of thermodynamics

« Approach to Absolute Zero
— 3" Jaw of thermodynamics
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)é‘ Staging

* Intercept heat in stages to reject heat at the highest
possible temperature

 In general heat rejection difficulty goes as T2

TFAWS 2015 — August 3-7, 2015 8



)5‘ Design: The “KISS” Principle

« Start with a design that can be calculated using “back of
the envelope” methods

— Make all components easy to analyze
* Analysis effort should not be underestimated!

— The fewer items that are crucial in a design the better
« Simpler analysis
» Simpler construction
« Simpler validation
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)é‘ Example

« GSE motor driven photogrammetry cameras for JWST

— Original concept: camera housing to cool passively through
Incidental contact in motor and gears

» Very difficult to model and verify performance
« Became an extra potential heat source that had to be tracked

— Solution: make system “deterministic” by using thermal straps
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)é‘ Estimating by Previous Example

* Previous systems have been made that can be used as
a “jumping off” point for a thermal design or estimating
cooling requirements

— Various parametrizations have been used to give an analog
expression to these extrapolations or interpolations of actual
systems
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5‘ Properties of Materials

« Thermal Conductivity

* Thermal Absorptivity and Emissivity
« Strength and Brittleness Properties
« Electrical Conductivity

« Specific Heat

« Gases and Liquids (density & pressure vs. temperature,
heat of vaporization and melting, crystal structure, etc.)

— Example: solid nitrogen has a low temperature change of phase
which causes an expansion. This was learned by NICMOS at
the cost of a compromised mission
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.,é‘ Conductivity Graph

e Thermal conductivity
varies greatly
between room T and
low T
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| !g) Y High Purity Metals
B\

« At low temperature electrons have fewer phonons to
scatter from, so the thermal conductivity goes up until
defects and impurities dominate

RRR = residual resistance ratio
A measure of the purity of the metal
And its crystallinity
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)5- Wiedemann-Franz

* Electrons carry the heat in metals

 W-F Is a relation between electrical and thermal
conductivity
p=L,T/K
Where p = resistivity, T = absolute temperature, K = thermal
conductivity, and L, = Lorentz constant = 2.44 x 10-8 V2/K?

* Not applicable to superconductors
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5 Y

l‘imissivity and Absorptivity: Temp. and Wavelength Dependence

* The emissivity of most materials is temperature and
wavelength dependent

— Requires wavelength dependent analysis for radiation which is
usually accomplished by creating a few wavelength bands in the
analysis software

— Experience on JWST shows that 3 wavelength bands
representing the major “hot” (60 K < “hot” < 300 K) sources
provide enough accuracy without greatly increasing model run
time
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)5- Properties of MLI

 The Lockheed Equation

Q/A = [(CNST M(Ng+L)](T,-Te) +
[(Crgtr)/NS] (Th4'67_Tc4'67)

Where Q/A is W/m?, Tm is the average of T, and T, N is the layer density in layers per

cm, N is the total number of layers, ¢, is the surface emissivity, C, is 2.11e-9, and C, is
5.39e-10.

 Degradation of MLI at lower T

— Basically dominated by thru-layer conduction at low T
e Structural MLI

— Each layer is separated by a well defined spacing and has some
structural qualities

« Lateral conduction
— May be minimized by slitting
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5- DAK Emissivity vs. T

Metals’ emissivity follow the Hagen-Reubens relation to first order:
R ~ 1-2[(2¢0w)/c]0.5

R is the reflectivity, €0 is the permitivity of vacuum, o is the frequency of the radiation and
c Is the conductivity of the metal surface

But DAK’s metal is thin
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é‘ Suitable Materials for Cryo

« Austenitic stainless steels: 304, 304L, 316, 321, A286
« Aluminum alloys: 6061, 6063, 5083, 2219, 1100

* Copper: OFHC, ETP and phosphorous deoxidized

* Brass

* Fiber reinforced plastics: G —-10 and G -11, CFRP

* Niobium & Titanium (frequently used in superconducting
RF systems)

* Invar (Ni /Fe alloy)
* Indium (used as an O ring material)

« Kapton and Mylar (used in Multilayer Insulation and as
electrical insulation

« Teflon (does not become brittle, but creeps)
* Quartz (used in windows)
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!é‘ Unsuitable Materials for Cryo

« Martensitic stainless steels - Undergoes ductile to brittle
transition when cooled down.

e« Cast Iron — also becomes brittle

« Carbon steels — also become brittle. Sometimes used In
300 K vacuum vessels but care must be taken that
breaks in cryogenic lines do not cause the vacuum
vessels to cool down and fail

 Rubber and most plastics

— Plastic insulated wires are frequently OK as long as the wire is
not repeatedly flexed which could lead to cracking of the
iInsulation (check outgassing first)
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,é‘ Gas Conduction-1
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)é‘ Gas Conduction-2

* Molecular Heat Transfer
— Gas density is lower than mean free path between objects
— Heat transfer depends on the temperature difference but not on
the separation distance

« JWST example
— To shorten the cool down time from room T (300 K) to 30 K
helium exchange gas is used (~10-2 Pa) within the chamber
* Mean free path is exceeded for 103 to 100 Pa depending on

objects’ spacing

« ASTRO-H example
— In the EM dewar a heat switch failed open
— To operate the adiabatic demagnetization refrigerator, a method
to use ~10-3 Pa of gaseous helium to remove the heat of
magnetization was used successfully
» Too much gas causes excessive thermal shorting to warmer

components in the dewar
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!é‘ Producing Cold: Cryogens and Cryocoolers

« Mechanical cryocoolers
* LN,, LHe, etc.

« Supplement through use of intermediate cooling stages
— Vapor cooling

— radiators
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25- Producing Low Temperatures in Space

« Radiation can only work to ~ 30 K, practically
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g“ Radiators in Space

« Some flight heritage at cryogenic temperatures (COBE, Landsat,
Cassini/CIRS, MAP, Spitzer)

— JWST will use radiative cooling

— Successful test of Subscale Cryo-optical Thermal Testbed in support of ST-9
Large Space Telescope proposal

» Operate from room temperature (and above) to as low as 30 K
— Depends strongly on mission design

« Passive heat rejection
— Sunshade/earthshade provides shielding from incoming radiation

— Radiator with a view of deep space connects to heat source (instrument, optics,
part of spacecraft bus) by means of a thermal distribution system

* Metal conductors
* Loop heat pipes
— Requires heaters/thermostats to regulate temperature
* Require stringent controls to meeting thermal budgets
» Spitzer reached 34 K on radiative outer shell

« JWST expects to reach ~26 K on instrument radiators

TFAWS 2015 — August 3-7, 2015 25



Jé‘Different Geometry - JWST Harness Radiator

» 4 stages of isolation to limit the amount of heat flowing
from the room temperature electronics (IEC) to the cold
Instruments (ISIM)

— Coldest stage is actually only isolator
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é‘ Dewar Construction

« Dewar must trade mechanical robustness with thermal isolation

« For liquid helium dewars usually have conduction and radiation heat
loads roughly the same

« Use vapor cooled shields to intercept heat at higher temperatures
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)é‘ Working with Cryogenic Fluids

* In general:
— Low heat of vaporization
— Can be pumped or pressurized to change boiling point
— Can freeze if too cold (except helium)
— Low to zero contact angle, i.e., wets all surfaces
— Represents a large potential energy in a sealed container

IRAS Dewar Launched 1983
First Superfluid He Dewar in Space
(not as large as it appears)
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The Unigue Phase Diagram of 4He
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Jé‘ Lab Cooler - Gifford McMahon Cycle

« Gifford-McMahon Refrigeration
Cycle
— Regenerator stores heat in

compression phase, and releases
heat in expansion phase

— Compress while most of the gas is
at warm end, and expand while
most of the gas is at the cold end

— Reverse the phase, and you have
an expensive heater!

TFAWS 2015 — August 3-7, 2015 30



« Mass, size, input power, and reliability are drivers
* Reverse Brayton Cycle

« Stirling Cycle

* Pulse Tubes

« Joule/Thomson Coolers
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lé‘Regenerator Cycle (Stirling and Pulse Tube)

From P. Kittel, “Are P-V and T-S Diagrams Meaningful for Regenerative Coolers?”
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Jé‘ Stirling Cycle

e Similar to GM cycle
— ldentical function of regenerator in coldfinger

— Pressure cycle driven by oscillator rather than tanks, valves and
a compressor

— Phase angle controlled electrically, mechanically, or
pneumatically

 Easier to miniaturize than GM
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!é‘ Pulse Tubes

« Similar to Stirling cycle
— ldentical function of regenerator in coldfinger, pressure cycle
driven by oscillator
— Phase angle controlled by resonant gas volume
— Simpler mechanism than Stirling, but a whole new set of gas-

control challenges
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!é‘ Joule Thomson Expansion

e Gas must be precooled
and not too high in L
pressure to produce ourve
cooling when expanded
Isenthalpically

f11
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/X Space Cryocooler Performance
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)é Instrumentation and What is Important to Measure

 Thermometry, thermometry, thermometry

* Pressure for fluids
— May be in situ or reading vapor pressure

* Pressure for vacuum
— Pressure reading depends on temperature
* Pp=Pg (TA/Tg)"
— For example a pressure gauge on the vacuum wall of a

thermal/vacuum chamber will read higher than the actual
pressure in a cold shroud
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)5- Thermometry

« Select thermometer type based on temperature range

— Use 4 lead devices where high sensitivity and accuracy are
required
« Remove thermal emfs by reversing current
— Not possible with diodes
« Self heating can produce erroneous readings in
thermistors
— Function of power and temperature
« Readout power applied = 10 T?

— But, higher voltage can be used to obtain higher sensitivity at a
cost of accuracy
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Thermometry Chart

10%

« Figure of merit for thermisters is ——= | '
1/RedR/dT
« Cernox —best < 70K _
e Pt-—bestfor>70K g
- Sidiodes good over wide range ~ © N
107 l
* Thermocouples have very poor |
sensitivity below 100 K
1.8 : 1 Temperatuli (K) - -
400 [ ——Trrrr -
1.6 Average
slope
14 -22.6 mV/K 00 L
1.2 2
21'0 0 10 20 30 40 50 60 70 E
% 0.8 E’
g 0.6 :"-; 10
s f
0.2 -2.1 mV/K
0 100 200 300 400
temperature (K) 1 -

10 100 1000
TFAWS 2015 — August 3-7, 2015 temperature (K) 40



| é‘ Heat Switches-Gas Gap

Uses closely spaced conductors separated by thermally

Insulating material

Gas is admitted to gap or pumped out by heating or

cooling an adsorbing material (getter)
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!é‘ Heat Switches-Passive Gas Gap

« Passively Operated Gas Gap Heat Switch
— Getter is thermally attached to the normally cold end
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é‘ Heat Switches-Mechanical

 Differential contraction
« Motor driven
 Manual

« Magnetostrictive

* Piezoelectric
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é‘ Heat Switches - Other

Superconducting Magnetoresistive
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5- Superconductivity

« Quantum mechanical effect where electrons in certain conductors
combine to form “Cooper pairs”

— Transition point affected by temperature, current density, and magnetic
field

« Characterized by zero electrical resistance and drop in thermal
conductivity

— Cooper pairs carry current and pass through the material without
interacting

— May be used for low T heat switch

« Types of superconductors

— Type | — Generally pure metals, T, <10 K
« Also can be used as a magnetic shield

— Type Il — Alloys, some pure metals, T, < 20 K
« Can remain superconducting in higher fields

— MgB, — Magnesium Diboride, T, ~39 K
— High Temperature Superconductors (HTS) — Ceramics, T, <110 K
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é‘ High Temperature Superconductivity

« Usually a ceramic consisting of RBCO, where R is a rare

earth element, for instance YBCO, yttrium barium copper
oxide

Can make large/high field coils

Joints have small amount of resistance so coil is not
“persistent”

Best performance is for bulk or flat tapes made with a
thin film deposition
— Round wire forms are now being explored
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!é‘ Making Use of Superconductivity

* i?R-free coils for motors and actuators
— Also proposed for energy storage
« Low thermal conductance high current wiring
 SQUIDs (Superconducting Quantum Interference Devices)

Magnet that produces 3 T with 2 A input
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Jé‘ In the Regime of Sub Kelvin Temperatures

 Quantum behavior

— 3He has Fermi-Dirac statistics (like electrons) and “He has Bose-
Einstein statistics (like photons)

— Helium does not freeze at atm. pressure

« 3He and “He
— 3He dissolves in “He, creating an opportunity for cooling

* Boundary resistance

— Not thermal contact per se, but a thermal conductance that
depends only on surface area

— Due to phonon mismatch across two different solids or phonon
mismatch from liquid helium to solid (Kapitza resistance)
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/X Very Low T Conductivity and Specific Heat

Qery Low T Conductivity and Specific Heat
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)é‘ Sub Kelvin Refrigeration

« 3He sorption coolers
 Dilution refrigerators
« Adiabatic demagnetization
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)é‘ 3SHe Sorption

« Sorption Coolers use a getter to pump the vapor from a
liquid reservoir

— Getter is recycled by heating and the gas is recondensed by a

higher temperature stage
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Jg“ Dilution Refrigeration

 Diluting the lighter isotope 3He, in liquid “He, increases the entropy of the
system and therefore cools

« Makes use of the non-zero solubility of 3He in “He even at very low

temperatures
« Can be made continuous by separating the 3He out of solution at higher
temperature and then re-condensing it o
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Y Adiabatic Demagnetization

« SdT = MdH takes the place of d(ST) = d(PV) in a cryocooler cycle
« [add in ch. 14 material from Zemansky]

« Adiabatic demagnetization refrigeration follows a very Carnot-like
cycle of constant S and constant T
— Produces efficiencies close to Carnot
— No moving parts for low temperature ADRs using gas-gap heat switches
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g)g“ Final Thought

It has been said that a problem in low temperature
physics can eventually be used to measure and achieve
even lower temperatures

— Problems are actually opportunities!
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